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By Jack Levine 

SUMMARY 

A general  descr ipt ion,  some d e t a i l s  of mechanical design and construction, 
and performance (including angle of a t tack  of the ro l l i ng  last stage) of a four- 
stage solid-propellant rocket system used i n  the  RAM (Radio Attenuation Measure- 
ment) Al flight tes t  are presented. 
of 17,800 feet per  second a t  an a l t i t u d e  of 175,000 f e e t .  
t h e  nose cone are a l so  discussed. 

The fourth stage at ta ined a maximum veloci ty  
Temperature data  on 

INTRODUCTION 

A s  pa r t  of a general  program a t  the  Langley Research Center t o  invest igate  
the  e f f ec t  of ionizat ion on radio-signal attenuation during reentry f l ight,  a 
free-flight tes t  program u t i l i z i n g  multistage rocket-propelled vehicles w a s  i n i -  
t i a t ed .  
s tudies  associated with the  problem of radio transmission through the ion sheath 
around reentry vehicles  (refs. 1 and 2) and f l i g h t  tests a t  lower speeds with 
l imited instrumentation ( r e f .  3 ) .  

Previous invest igat ions have been l imited t o  ground tests and theo re t i ca l  

The first vehicle of t h e  RAM (Radio Attenuation Measurement) f l ight program, 
a four-stage solid-propellant rocket system, w a s  designed t o  t e s t  a payload a t  a 
ve loc i ty  of 18,000 feet per second and a t  an a l t i t u d e  of approximately l7O,OOO 
feet .  T h i s  report  presents a general descr ipt ion of t h e  f l ight-vehicle  system, 
some d e t a i l s  of mechanical design and construction, vehicle performance, t i m e -  
h i s tory  var ia t ions  of payload skin temperatures, and approximate angles of a t tack  
of the p8ylOad stage. 
i s  presented i n  reference 4. 

The f l i gh t - t e s t  analysis  of t he  measured s igna l  attenuation 

The four-stage vehicle w a s  designed t o  probe the  region of high signal a t ten-  
uation w h i l e  f ly ing  an ascending t r a j ec to ry  so that it would e x i t  t he  so-called 
"blackout region" after a t ta in ing  peak speed. This type of t r a j ec to ry  w a s  chosen 
ra ther  than t h e  t r a j e c t o r i e s  used i n  the  f l i g h t  tests of reference 3 ,  since under 
these conditions aerodynamic heating problems are minimized and t h e  performance 



of the instrumentation can be monitored before and a f t e r  the  period of expected 
high s ignal  a t tenuat ion.  

The four th  (payload) stage a t ta ined  a maximum veloc i ty  of 17,800 f e e t  per 
second a t  a burnout a l t i t u d e  of l75,OOO f ee t .  
the  NASA Wallops Stat ion,  Wallops Island, Va. 

The f l i g h t  t e s t  w a s  conducted at 

SYMBOLS 

longi tudinal  acceleration, g un i t s  

normal acceleration, g un i t s  

transverse acceleration, g u n i t s  

pitching-moment-curve slope, r a t e  of change of pitching moment f o r  
s m a l l  angles of a t tack,  f t- lb/rad 

t o t a l  pressure coeff ic ient  across a normal shock 

p i t ch  or  yaw moment of i n e r t i a ,  slug-ft2 

r o l l  moment of i n e r t i a ,  slug-~t' 

difference i n  pressure between diametrically opposed o r i f i c e s ,  
lb/sq i n .  

dynamic pressure,  lb / sq  f t  

temperature 

time, sec 

angle of incidence, deg 

density of air, slugs/cu f t  

Sub s c r i p t s  : 

xz 
00 f r e e  stream 

reference plane of pressure o r i f i c e s  
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VMICLIE SYSTEM 

General Arrangement 

The vehicle used i n  the  RAM Al t e s t  w a s  an unguided, four-stage, sol id-  
propellant,  aerodynamically s tab i l ized  rocket system. The f i r s t  stage w a s  a 
Castor XM33E3 motor with two auxi l ia ry  Recruit XMlg motors fastened on opposite 
s ides  between the Castor f i n s .  
and the  four th  (payload) stage was a Recruit XMl9 motor. 
Recruit rockets, which had nozzles canted so tha t  t he  th rus t  would be directed 
through the  approximate center of gravi ty  of the  four-stage configuration, were 
used t o  provide a d d i t i o n d  accelerat ion f o r  the f i r s t  2 seconds of flight t o  over- 
come the  wind problem resu l t ing  from low i n i t i a l  acceleration. The overa l l  
length of t h i s  system w a s  approximately 65 f e e t  and the  weight approximately 
14,400 pounds a t  launch. 
stage configuration i s  shown i n  f igure  1. A photograph of the  payload stage and 
booster system mounted on a zero-length boom-type launcher i s  shown i n  f igure  2. 
Figure 3 shows the  four-stage configuration j u s t  a f t e r  launch. 
end view of the  first stage and shows the  attachment of t he  two auxi l ia ry  Recruits 
i n  r e l a t ion  t o  the  f i r s t - s t a g e  f in s .  

The second and t h i r d  stages were XM43 mDtors, 
The two auxi l ia ry  

A sketch including per t inent  dimensions of the four- 

Figure 4 i s  an 

The first three  stages of t he  rocket system were s tab i l ized  by f i n s .  The 
f i n s  of t h e  first and second stages were mounted i n  l i n e  and the  f i n s  of the  
t h i r d  stage were in t e rd ig i t a t ed  with those of the f i r s t  and second stages. The 
second- and third-s tage f i n s  were canted 0.4' and 0.6O, respectively,  t o  impart 
a r o l l i n g  motion during cer ta in  times i n  t h e  f l i g h t .  
discussed i n  a subsequent section. Figure 5 i s  a photograph of the third-s tage 
fin-shroud assembly and i s  typ ica l  of the  second-stage fin-shroud assembly. 
four th  stage had a loo half-angle conical frustum s t ab i l i z ing  surface. 

The vehicle r o l l  program i s  

The 

Stage Coupling and Separation Devices 

A magnesium adapter bol ted t o  the f i r s t - s t age  motor w a s  coupled t o  the 
second-stage nozzle with a Marman band as shown i n  f igures  6(a) and 6 (b ) .  The 
l i p s  on the  adapter and the  nozzle were clamped together with segments held i n  
place by t h e  Marman band. Two of t he  four  b o l t s  holding the assembly together 
were explosive b o l t s .  A conventional a i r c r a f t  b o l t  w a s  a l t e r ed  t o  have a deep 
thread r e l i e f  and the  inside w a s  bored out and f i l l e d  with approximately 2 grams 
of p i s t o l  powder. 
time after the  burnout of t he  f i r s t - s t age  motor, destroyed the  b o l t ,  and permitted 
the  f i r s t  stage t o  drag separate. Figure 6(a) a l so  shows a lock-key arrangement 
which w a s  used t o  prevent in - f l igh t  ro ta t ion  between the  f irst  and second stage.  

A timer-actuated zero-delay squib igni ted the powder a short  

The second and t h i r d  stages were coupled with a threaded aluminum blowout 
diaphragm and locked ( t o  prevent unscrewing) as shown i n  f igures  6(c)  and 6(d) .  
The diaphragm was screwed i n t o  the  third-stage nozzle; then the  second-stage 
s t e e l  adapter w a s  screwed t i g h t  on the  diaphragm and in to  the matching l i p s  and 
face of the  third-s tage nozzle. 
t h rus t  face of t he  second-stage motor. 

The second-stage adapter w a s  then bol ted t o  the 
Igni t ion  of the  t h i r d  stage caused the  
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diaphragm t o  collapse and free the  t h i r d  stage from the burned-out second-stage 
booster. I n  order t o  obtain a desired d i f f e r e n t i a l  pressure f o r  separation pur- 
poses, the s lo t t ed  segments and web of t he  blowout diaphragm were covered with a 
f iber  glass-rubber composite and bonded t o  the  diaphragm as shown i n  f igure  6 ( c ) .  

The t h i r d  and fourth stages were coupled and locked together i n  a manner s i m -  
i l a r  t o  t ha t  used f o r  t h e  second and t h i r d  stages as shown i n  f igures  6(e)  and 
6(  f )  . A threaded aluminum diaphragm w a s  screwed in to  the  fourth-stage f l a r e  and 
the  third-stage steel adapter w a s  screwed t o  the  diaphragm so tha t  t i g h t  contact 
w a s  made with the  face and l i p s  of t he  fourth-stage flare. 
fourth-stage motor, f l a r e ,  and adapter combination w a s  bolted t o  the  face of t he  
booster by using b o l t  holes i n  t h e  adapter. 
caused the  diaphragm t o  collapse and free the  four th  stage from the  third-stage 
booster.  
covered i n  the  manner previously described f o r  the  second- t o  third-stage blowout 
diaphragm. 

Then the  e n t i r e  

The ign i t ion  of the fourth stage 

The blowout diaphragm used i n  the  th i rd-  t o  fourth-stage adapter w a s  

Payload Stage 

Since the  payload t e s t ed  i n  the  present invest igat ion w a s  attached t o  the  
f ront  end of the  four th  stage and a l so  underwent the high-speed portion of the  
f l ight tes t ,  d e t a i l s  of i t s  s t ructure  and instrumentation are presented. 

The payload stage w a s  a body of revolution, approximately 147 inches long, 
with a hemispherically blunted 9' half-angle conical nose, a cy l indr ica l  mid- 
section, and a loo half-angle f l a r e  section a t  t h e  rear. 
sions of t h e  payload stage and some d e t a i l s  of the  nose on which skin temperature 
and vehicle angle-of-attack measurements w e r e  made. 
stage i s  shown i n  figure 7(b).  

Figure 7(a) shows dimen- 

A photograph of the  payload 

The tes t  nose cone of the payload stage consisted of a 1-inch-radius hemi- 
spherical  apex on a go half-angle conical section. 
machined from a so l id  block of high-conductivity, e lec t ro ly t ic -p i tch  copper and 
w a s  threaded t o  the  cone which w a s  chemically milled from 0.125-inch-thick Inconel 
t o  a nominal 0.095-inch thickness and then ro l led  and seam welded. The copper and 
Inconel surfaces were f inished with f ine-gr i t  polishing compound with only a mod- 
erate e f f o r t  made t o  a t t a i n  a low-roughness f in i sh .  Figure 8(a) shuws the  dimen- 
s ions of t he  tes t  nose and the  location of t he  thermocouples and t h e  d i f f e r e n t i a l  
pressure o r i f i ce s .  
each temperature measuring s ta t ion .  
f igure  8(b) .  

The hemispherical apex w a s  

Also noted on t h i s  f igure i s  the  measured skin thickness a t  
A photograph of t he  t es t  nose i s  shown as 

The cyl indr ica l  section j u s t  behind the  nose cone w a s  of double-wall con- 
s t ruct ion.  The inner  w a l l  and main s t ruc tu ra l  member w a s  a cy l indr ica l  magnesium 
section; t h i s  section, bol ted t o  the  thrust face of t he  Recruit motor, housed the  
telemeter equipment and protected it from external  radiat ion.  
shield (nonstructural)  w a s  spun from 0.05-inch-thick Inconel and w a s  f r e e  t o  
expand rearward. 

The outer  heat 
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The f l a r e ,  which provided aerodynamic s t a b i l i t y  l o r  the  payload stage,  was 
constructed of 0.078-inch-thick Inconel and was attached t o  the  rear face of the  
payload-stage rocket motor. 

General Vehicle Mass Properties 

Time h i s t o r i e s  of t h e  vehicle weight, center-of-gravity locations,  and yaw, 
pi tch,  and r o l l  moments of iner t ia  are presented i n  figure 9 f o r  the  four stages 
of  the f l i g h t  configuration. These data  are based on both calculated and measured 
mass propert ies  of t h e  rocket motors, fin-shroud assemblies, adapter sections,  
components, and vehicle payload. Actual measurements obtained included the  mass 
propert ies  of t h e  payload s tage and t h e  weights and center-of-gravity locat ions 
of t he  individual ly  loaded first-, second-, and third-s tage assemblies. The f i n -  
shroud assemblies of t he  f irst  three  stages and t h e  three adapter sections between 
the  stages were a l so  weighed. A lack of sui table  swing f a c i l i t i e s  precluded 
ac tua l  measurement of t he  i n e r t i a  propert ies  of the  f i rs t  three stages. 

Protection From Aerodynamic Heating 

The surfaces of the  four-stage vehicle were analyzed t o  determine the  areas 
tha t  would experience severe aerodynamic heating. C r i t i c a l  areas were covered 
with thermal-protection materials.  

The f i r s t - s t age  magnesium f i n  ( fabricated from 0.25-inch-thick p l a t e )  had 
leading-edge wedges covered with 0.010-inch-thick f i b e r  g lass  and then capped 
with a sheet of 0.032-inch-thick Inconel. The second- and third-stage magnesium 
f i n s  ( fabr icated from 0,188-inch-thick p la te )  were completely covered with 
thermal-protection materials. The leading-edge wedges and f la t  sections were 
covered with 0,018-inch-thick f i b e r  g lass  and then covered with 0.032-inch-thick 
Inconel sheet.  The leading edge of the  second-stage f i n  had an addi t ional  cap, 
of 0.06-inch-thick Inconel, which extended absut 1.5 inches back from t h e  leading 
edge. The third-stage f i n  a l so  had an addi t ional  s t a in l e s s - s t ee l  cap which 
extended back from t h e  leading edge approximately 2 inches. 
t o  0.23 inch f l a t  across the  leading edge ( t o  reduce the  stagnation-line heat 
t r ans fe r )  and w a s  0.70 inch deep. 
and third-s tage f i n s  were sprayed with a high-temperature paint  t o  a thickness of 
0.03 inch. 
leading edges, t he  leading-edge wedges, and f la t  sections of t he  second- and 
third-stage f in s .  

T h i s  cap w a s  machined 

The trail ing-edge wedge sections of t he  second- 

Figure 10 shows photographs of t he  heat-protection material on the  

The f i r s t - s t age  adapter w a s  protected from aerodynamic heating with a high- 
temperature paint ,  sprayed on t o  a thickness of 0.065 inch. 

The calculated temperature rise f o r  t he  cy l indr ica l  section of t he  fourth- 
stage motor indicated tha t  t he  l i n e r  between the  motor-case w a l l  and the  grain 
could become so f t  and, under acceleration loads, the motor grain would slump. 
Thus, the fourth-stage-case w a l l  w a s  thermally protected with a high-temperature 
ab la t ive  paint  sprayed on t o  a nominal thickness of 0.03 inch. 
measure of conservatism, the  holes i n  the  f ront  and rear end of t h e  fourth-stage 

A s  an added 
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motor (see f i g .  7(a)) were f i l l e d  completely with asbestos mater ia l  and the sta- 
b i l i z i n g  flare of t h i s  stage w a s  sprayed with a high-temperature ablat ive paint  
t o  a thickness of 0.020 inch. 

INSTR-ATION 

Vehicle 

The telemeter, car r ied  i n  the  forward pa r t  of t he  payload stage, transmitted 
seven continuous channels of information. These were normal and transverse accel-  
erat ions,  t h rus t  and drag accelerations,  skin temperature, d i f f e r e n t i a l  pressure 
measurements, and antenna eff ic iency (forward power, ref lected power, and imped- 
ance) measurements. The antenna-efficiency measurements, which were the  primary 
purpose of t h i s  f l i g h t  t e s t ,  are presented with analysis i n  reference 4. 

Readings from 12 thermocouples were commutated on the  temperature channel 
and these data  were recorded approximately every 0.2 second. The locat ions of the 
12  thermocouple s t a t ions  are shown i n  f igure  8(a). 
i n s t a l l e d  on the  Inconel conical section of the  t e s t  nose were spot welded t o  the 
inner surface of the  skin. The remaining three  thermocouples in s t a l l ed  i n  the 
copper apex were s i l v e r  soldered. Three holes were d r i l l e d  i n  the  copper apex t o  
t he  required depth and t h e  thermocouples were placed i n  the  holes u n t i l  they 
bottomed and then a common sweating process w a s  used t o  complete the  in s t a l l a t ion .  

The nine thermocouples 

Thrust and drag accelerat ions were measured by accelerometers cal ibrated i n  
grav i ta t iona l  u n i t s  from -5g t o  18Og of t h rus t  and from 2g t o  -5g of drag. 
and transverse accelerat ions were measured continuously by accelerometers c a l i -  
brated t o  kl5g. 
mine f l i g h t  irregularities during t h e  boost portion of the  f l i g h t .  

Normal 

The normal and transverse accelerometers were employed t o  deter-  

The pressure o r i f i ce s ,  located on t h e  hemispherical surface of t he  nose cone 
and shown i n  f igu re  8(a), were connected t o  a d i f f e r e n t i a l  pressure c e l l  f o r  use 
as an angle-of-attack indicator .  The d i f f e r e n t i a l  pressure c e l l  w a s  cal ibrated 
t o  a fu l l - sca le  range of 1.5 t o  -1.5 pounds per square inch and capable of 
100-percent overload without a f fec t ing  i t s  l i n e a r i t y .  

A radio beacon, located i n  the  telemeter section of t he  payload stage, used 
the  s l o t  antenna which i s  shown i n  f igure  8(a). 
antenna w a s  determined from measurements made on the  transmission l i n e  feeding 
t h e  s l o t .  T h i s  information w a s  transmitted t o  ground receiving s t a t ions  through 
t h e  telemeter antenna located on the  cy l indr ica l  portion of t he  payload stage as 
shown i n  f igure  "(a). The results of these measurements are shown and discussed 
i n  reference 4. 

The e f f ic iency  of the  s l o t  

Vehicle r o l l  rate w a s  obtained from the var ia t ion i n  s ignal  strengths, from 
the onboard t ransmit ters ,  measured a t  the  various ground receiving s ta t ions .  A s  
t he  vehicle made one complete revolution, two n u l l  points w e r e  noted i n  the  s ig-  
n a l  i n t ens i ty  t race .  
check of the  radiat ion pa t te rn  f o r  t h e  vehicle antenna arrangement. 

These n u l l  points  corresponded t o  those i n  the  pref l igh t  
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Ground Range 

Telemetry receiving s ta t ions  were located at  the  launching s i t e  (Wallops 
Stat ion)  and on a Wallops Stat ion sea-range telemeter trailer located on a ship 
due eas t  and approximately 95 miles down range from the launching s i t e .  
s ignal  strength from the t ransmi t te rs  onboard the payload stage were monitored a t  
Wallops Stat ion,  on the  down-range ship, a t  Langley Stat ion,  and a t  Coquina 
Beach, N.C. 

Radio 

The payload stage w a s  tracked by FPS-16, Reeves Mod. I1 SCR-584, and SCR-584 
space-position radar sets t o  provide ve loc i ty  and t r a j ec to ry  data  i n  addition t o  
the  data  provided by t h e  instrumen%ation car r ied  in te rna l ly .  
conditions were determined by means of a radiosonde launched near t he  t i m e  of 
f l ight  and tracked by a Rawin set AN/GMD-lA t o  an a l t i t u d e  of approximately 
85,000 feet. I n  an attempt t o  obtain atmospheric data  f o r  the  high-alt i tude por- 
t i o n  of t h e  flight, an Arcasonde and an Arcas-Robin were launched soon after the  
f l i g h t  of t h e  t e s t  vehicle and tracked by t h e  FPS-16 radar s e t .  Atmospheric den- 
s i t y  and temperature data  were obtained a t  a l t i t udes  from l30,OOO feet t o  approx- 
imately 185,000 feet. 

Atmospheric and wind 

Accuracy 

The measured temperatures are believed t o  be accurate within f1 percent of 
the  fu l l - sca le  range of t h e  thermocouple instrumentation. Therefore, t he  skin 
temperature measurements are accurate within *20° F. 

The d i f f e r e n t i a l  pressure measurements are believed t o  be accurate within 
f 2  percent of the ca l ibra ted  fill-scale range of t he  d i f f e r e n t i a l  pressure c e l l .  
T h i s  r e s u l t s  i n  an accuracy i n  Ap of k0.06 pound per  square inch. The angles 
of incidence of t he  payload stage, calculated f romthe  measured d i f f e r e n t i a l  pres- 
sure data,  a r e  believed t o  be accurate within k1.0'. 

The ve loc i ty  data  which were obtained by d i f fe ren t ia t ion  of the data from 
the FPS-16 space-position radar and by integrat ion of accelerometer data are 
believed t o  be accurate within +lo0 feet per second. 

FLIGIIT-TEST RESULTS AND DISCUSSION 

Trajectory Fl ight  Plan and Test Conditions 

The four-stage rocket configuration w a s  launched at  TO0 elevation and 
boosted along a b a l l i s t i c  t r a j ec to ry  t o  an a l t i t u d e  of approximately 80,000 feet 
with t h e  Castor motor. 
on an ascending t r a j ec to ry  t o  obtain m a x i m u m  ve loc i ty  at  as low an a l t i t u d e  as 
possible without exceeding allowable skin temperatures. 

The remaining three stages were f i r e d  i n  rapid sequence 

The two Recruit motors, which burned only 1.9 seconds, were added t o  the 
f irst  stage t o  increase the  take-off accelerat ion of the  14,bO-pound combination 
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from about 3.8g (without Recruits) t o  about log. 
w a s  necessary so t h a t  at low a l t i t udes  (up t o  4-00 f e e t )  dispersion due t o  wind 
e f f ec t s  would be minimized. 

The increase i n  take-off g u n i t s  

The two Recruit motors were f i r e d  by means of pull-away c l ip s  when the com- 
bination began t o  move so that they would not i gn i t e  p r io r  t o  the  Castor motor 
igni t ion.  AJ-so, with t h i s  f i r i n g  sequence the  Castor motor w a s  pressurized and 
therefore strengthened before the  th rus t  of the  Recruits w a s  applied t o  the  
s t ructure .  

A t  38.6 seconds a f t e r  launch, t h e  Castor motor drag separated when zero- 
delay squibs, igni ted by a preset  mechanical timer which w a s  actuated by an 
i n e r t i a  switch a t  launching, f i r e d  two explosive b o l t s  t o  re lease the  Marman band 
arrangement. The remaining stages coasted t o  an a l t i t ude  of  approximately 
80,CiOO f e e t  a t  which time the  second switch on the  preset  mechanical timer closed 
and t h e  instantaneous i n i t i a t o r s  f i r e d  the  pyrogen unit located i n  the head cap 
of the  second stage and thereby igni ted t h e  second stage. The t h i r d  and fourth 
stages were f i r e d  automatically a t  burnout of t he  previous stage by means of pres- 
sure switches cocked and t r ipped by the  r i s e  and f a l l ,  respectively,  of t he  cham- 
ber  pressure of the  motor of the  previous stage.  

A s  noted i n  f igure  1, the second- and third-stage f i n s  were canted counter- 
clockwise (viewed from the r ea r )  0.4' and 0.6O, respectively.  
imparted suf f ic ien t  ro l l i ng  motion t o  the last  three  stages of the  system t o  
avoid a poten t ia l  roll-resonance condition (coupling of r o l l  and short-period f r e -  
quency) during t h i s  portion of t he  f l ight t ra jec tory .  This r o l l  w a s  a l so  neces- 
sary t o  minimize t h e  dispersion of the  fourth stage which operated a t  high a l t i -  
tudes (low q region) .  The vehicle r o l l  requirements a re  discussed i n  more 
d e t a i l  i n  t h e  section e n t i t l e d  '~011 Rates." 

T h i s  canting 

A portion of t he  f l ight t r a j ec to ry  followed by t h e  four-stage system i s  
shown i n  f igure  11. 
The time h i s t o r i e s  of the free-stream tes t  conditions of veloci ty  and a l t i t ude  
are shown i n  f igure 12. 

Times  of s ign i f icant  events a re  indicated on the  t ra jec tory .  

Trajectory da ta  presented f o r  t he  flight tests are based mainly on the  
r e s u l t s  obtained from the  RCA AN/FPS-~~ tracking radar. 
range, and ve loc i ty  of t h e  vehicle were derived from FPS-16 radar data  which were 
recorded numerically and used i n  conjunction with an IBM 630 d i g i t a l  computer pro- 
gramed.for an oblate ear th .  A l l  reduced radar data  were converted t o  the  launch- 
s i te  reference. 
f o r  comparative purposes. 
SCR-584 radars  were corrected f o r  winds as measured by radiosonde instrumentation. 
During the  thrus t ing  of t he  t h i r d  and four th  stages,  ve loc i ty  w a s  a l so  determined 
( f o r  comparative purposes) from integrat ion of the telemetered longitudinal 
accelerations.  

Alti tude,  horizontal  

Data furnished by supporting radar u n i t s  were reduced s imilar ly  
The ve loc i ty  data  obtained from both the  ns-16 and 
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Vehicle Environmental Conditions 

Time h i s t o r i e s  of free-stream Mach number and Reynolds number per foot  are 
shown i n  f igure  l3(a).  
dynamic pressure. 
mately 85,000 feet (t  = 44 seconds) by using atmospheric data  furnished by radio- 
sonde. For a l t i t u d e s  grea te r  than 85,000 feet, t he  ARDC 1959 model atmosphere of 
reference 5 w a s  assumed and used d i rec t ly ,  since measured atmospheric data  a t  t he  
higher a l t i t u d e s  were obtained only f o r  a l imited portion of the  payload-stage 
environment and some question e x i s t s  as t o  t h e i r  degree of r e l i a b i l i t y .  

Figure l3(b) shows the  free-stream f l i g h t  var ia t ion  of 
These quant i t ies  were calculated f o r  a l t i t u d e s  up t o  approxi- 

A comparison of t h e  measured density and temperature data  with t h e  ARDC 
1959 model atmosphere i s  shown i n  f igu res  14(a) and 14(b).  
densi ty  measurements obtained from the  radiosonde and Arcas-Robin are i n  good 
agreement with t h e  A R E  1959 model atmosphere, however, the agreement with the  
Arcas-Robin da ta  may be for tu i tous .  The temperature measurements obtained by 
radiosonde and Arcasonde are a l so  i n  good agreement with the  model atmosphere as 
shown i n  f igu re  14(b) .  

I n  f igure 14(a) the  

Accelerations 

Figure 15 shows t h e  time h i s t o r i e s  of the  measured accelerat ions of the  four- 
stage vehicle,  uncorrected f o r  off-the-center-of-gravity locations.  The longi- 
tudinal  accelerometer w a s  included i n  t h e  vehicle instrumentation as an added 
means f o r  ve loc i ty  determination i n  case of radar malfunction and a l so  as a means 
f o r  monitoring ac tua l  stage ign i t ion  and burnout times. The maximum longi tudinal  
accelerat ion attaiqed by t h e  payload stage w a s  approximately 144g and i s  shown 
i n  f igure 15(a). Measurements made by t h e  normal and transverse accelerometers, 
intended f o r  monitoring gross vehicle motions, are shown i n  f igure l > ( b ) .  These 
measured accelerat ions were less than l g  during the  motor burning t i m e s ;  however, 
a t  ign i t ion  times an increase occurred which w a s  probably due t o  the  i n i t i a l  sep- 
a ra t ion  disturbance. 
f l i g h t  indicated t h a t  the various stages w e r e  w e l l  balanced dynamically and s t ruc-  
t u r a l  misalinements were small. 

The very s m a l l  t r i m  accelerations recorded throughout the  

Roll  Rates 

The f l i g h t  time h i s t o r i e s  of t he  measured r o l l  rates and calculated short- 

This f igure i l l u s t r a t e s  two of t he  varied aerody- 
period'  (pi tch)  and first-mode s t ruc tu ra l  frequencies of t h e  four-stage configura- 
t i o n  are  shown i n  f igure 16. 
namic and s t r u c t u r a l  problems which required solutions.  The aerodynamic problem 
i s  t h a t  of ro l l -p i tch  resonance. T h i s  i s  a condition i n  which motions about t he  
f l ight path are amplified t o  a la rge  extent when the  r o l l i n g  frequency becomes 

equal t o  the  nutat ional  frequency. T h i s  resonant frequency iir,"", i s  very 

near ly  equal t o  t h e  model nonrolling na tura l  p i t ch  frequency i-2 f o r  t he  
slender configuration under consideration. 
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In  the  present tes t ,  the  f i r s t - s t age  f i n s  of the vehicle system were set f o r  
zero r o l l ;  however, manufacturing tolerances were such that a small res idual  cant 
o r  t w i s t  existed.  
r e s u l t s  from t h i s  small (< 0.lo) cant. A s  can be seen, there  i s  an adequate mar- 
gin between the  r o l l  and pitch frequencies. 
high a l t i t ude ,  dynamic pressure i s  low and, therefore ,  the  short-period p i t ch  f r e -  
quency i s  f a i r l y  low f o r  these stages; i n  f ac t ,  f i n  incidence angles due t o  manu- 
factur ing tolerances would be very l i k e l y  t o  produce a r o l l  r a t e  very close t o  
p i t ch  f requencie s . 
were in ten t iona l ly  put i n to  the  second- and third-stage f i n s ,  respectively,  so 
tha t  t h e  r o l l  r a t e  would rapidly pass through the p i t ch  frequency. 
angular deviation of t he  vehicle from the f l ight  path was kept small by passing 
through the  r e  sonant frequency r e l a t ive ly  quickly. 

The measured f i r s t - s t age  r o l l  frequency shown i n  f igure  16 

Since the  l a t te r  stages operate a t  

Theref ore,  f a i r l y  large angles of incidence, 0.4' and 0.6', 

Therefore, the 

Some aerodynamic i n s t a b i l i t y  w a s  expected at the  time of the  fourth-stage 
operation because rocket-motor exhausts at high a l t i t udes  (low density) can cause 
extensive separation of the flow over the  vehicle; t h i s  flow separation can sub- 
s t a n t i a l l y  reduce the  effect iveness  of t he  s t ab i l i z ing  surface ( r e f .  6 ) .  I n  view 
of t he  mission requirements and dispersion l imi ta t ions  of t he  impact area of t h e  
payload stage, it w a s  necessary t o  determine the  r o l l  rate required t o  r e s t r a in  
the m a x i m u m  t o t a l  yaw angles of t he  four th  stage t o  about 5 O .  Therefore, es t i -  
mated m a x i m  t o t a l  yaw angles and rates a t  fourth-stage separation, t h rus t  asym- 
metry, and a reduction i n  flare effect iveness  a t  s m a l l  angles of a t tack  f o r  t he  
four th  stage were incorporated i n t o  the equations of motion and were numerically 
solved with the  IBM 7090 e lec t ronic  data  processing system. Results of t h i s  s i m -  
u la t ion  showed t h a t  a r o l l  rate of approximately 4 cycles per second w a s  necessary 
t o  maintain t h e  angular deviation of t h e  geometric longitudinal axis from the  
f l i g h t  path within 5' during the  data-gathering period (midway through burning 

t h a t  t he  r o l l  rate a t  ign i t ion  of t he  four th  stage w a s  approximately 4.5 cycles 

increase i n  the  r o l l  rate f o r  symmetrical bodies of revolution without f i n s  has 
been measured i n  other f l i g h t  tests.  Roll  amplification has a l so  been measured 
during the  thrus t ing  of 10-inch-diameter spherical  rocket motors and i s  discussed 
i n  reference 7. 

, and approximately 6 seconds after burnout) of t h e  four th  stage. Figure 16 shows 

per second and increased t o  approximately 4.75 cycles per  second at  burnout. I T h i s  

The r o l l i n g  of a large missile a t  high rates presents some s t ruc tu ra l  prob- 
lems and the  l i m i t  of t h i s  r o l l  i s  determined f o r  the  most pa r t  by the  s t ruc tu ra l  
charac te r i s t ics .  The r o l l  rate during the  operating t i m e  of t h e  second and t h i r d  
stages,could not be increased t o  too high a r a t e  o r  it would approach the  f irst-  
mode s t ruc tu ra l  frequency and again an undesirable resonant condition could occur. 
The first-mode s t ruc tu ra l  na tura l  frequencies f o r  the  RAM Al vehicle,  shown i n  
f igure 16, were calculated by the  method of reference 8. 

Angle of Attack 

The difference i n  pressures between diametrically opposed o r i f i c e s  located 
i n  the  hemispherical apex of t he  payload stage w a s  measured over t he  range of t he  
t es t  t ra jec tory .  Figure 17 shows the  time var ia t ion  of t he  measured d i f f e r e n t i a l  
pressures. The o r i f i c e s  were located i n  the  hemispherical apex on 45' radius 



vectors measured from the  vehicle longitudinal ax is .  
measurement was included i n  t h e  instrumentation of t h e  payload stage so tha t  a 
determination of t he  flow angular i ty  during the  high-speed portion of the  t e s t  
( t h rus t  and coast)  period of the  payload stage could be made. 

(See f i g .  8(a) .) This 

Wind-tunnel tes ts  on cones (ref.  9 )  and unpublished data on hemispherical 
noses have shown t h a t  d i f f e r e n t i a l  pressure measurements on the  nose can be used 
f o r  determining flow angular i ty  at hypersonic speeds. 
of a t tack  accurately with t h i s  technique, d i f f e r e n t i a l  pressure measurements i n  
two orthogonal planes would be required f o r  a ro l l i ng  missile. For the present 
tes t ,  d i f f e r e n t i a l  pressure measurements were taken i n  one plane on the  premise 
t h a t  t he  r o l l i n g  motions would be wel l  above resonance and the  resu l t ing  angular 
epicycloid motions would be nearly c i rcu lar  ( r e f .  10). I n  this case, incidence- 
angle measurements i n  one ro ta t ing  plane would provide a close approximation of 
t he  vehicle angle of a t tack .  
employed t o  determine the  incidence angle. 
urements i n  the  XZ-plane ( the tes t  case) and t h e  pressure o r i f i c e s  incl ined 43' 
f romthe  axis of symmetry, 

following expression: 

I n  order t o  determine angle 

Reference 9 shows tha t  Newtonian theory may be 
With the  d i f f e r e n t i a l  pressure meas- 

vXz of the  ro ta t ing  plane may be determined from the  

A t  Mach numbers grea te r  than 10, 
constant. 

C p , t  i s  approximately equal t o  1.84 and 

The time h is tory  of qxz 
i s  shown i n  f igures  18(a) and 18(b). 
i n  t h i s  f l i g h t  regime show t h a t  t he  
expected t o  r e s u l t  from epicycloid motions which are nearly c i rcu lar .  
a l so  showed t h a t  the  maximum points  of the envelope were approximately equal t o  
the  maximum angle of a t tack  of t he  r o l l i n g  vehicle.  

during the  th rus t  and coast of the  payload stage 

Simulation s tudies  of the  vehicle motions 
t i m e  h i s t o r i e s  of f igure  18 may be qxz 

The s tudies  

The symmetry of t h e  f l i g h t  time M s t o r i e s  of vxz shown i n  f igure  18 a lso  

ind ica tes  t h a t  t he  r o l l  ax i s  w a s  a l ined with the  payload-stage geometric axis and 
t h a t  the  t r i m  angle i n  t h e  plane of t h e  measurements was negl igible .  The maximum 
angle of a t tack  w a s  about 6 O  during the  payload-stage thrus t  period and about 4' 
during the  sub sequent coast f l ight .  

Skin Temperatures 

Time h i s t o r i e s  of skin temperatures measured a t  various s t a t ions  on t h e  nose 
cone of the  payload stage during the  f l i g h t  are shown i n  f igure 19. Thermocouple 
s t a t ions  1, 2, and 3 were located i n  the  sol id  copper hemispherical apex of the  
nose cone. S ta t ion  1, located a t  the  stagnation point,  reached a higher tempera- 
t u r e  than s t a t ion  2 o r  s t a t ion  3 ( the  coolest s ta t ion)  located fur ther  downstream. 
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Stat ion 4, located on t h e  Inconel nose cone ju s t  a f t  of t he  copper-Inconel junc- 
t u re ,  shows a peak temperature of about 630° F which i s  lower than tha t  f o r  the  
remainder of the s t a t ions  located on the Inconel cone. This lower temperature a t  
s t a t ion  4 i s  probably due t o  i t s  proximity t o  the th ick  copper apex. 
t o  12, located on the  Inconel nose, a l l  reached a maximum of approximately TOO0 F. 
During the  period of approximately 66 t o  70 seconds, no temperature data are  
available since the temperature channel of the  telemetry w a s  noisy and no i n t e r -  
pretat ion of  the  data could be made. 

Stat ions 5 

The measurements presented i n  f igure  19 a re  average temperatures of a rolling 
vehicle at osc i l la tory  angles of a t tack.  
and 9, which a re  diametrically opposite, and s ta t ions  7 and 10, s imilar ly  located, 
indicate  tha t  a temperature averaging process did occur f o r  th is  ro l l i ng  case 
although the  vehicle osc i l la ted  at angles of a t tack.  

Temperature measurements a t  s t a t ions  5 

CONCLUDING REMARKS 

A general description, some details  of mechanical design and construction, 
and f l i g h t  performance of a four-stage solid-propellant rocket vehicle have been 
presented. The vehicle was designed f o r  t h e  purpose of invest igat ing the e f fec t  

I of ionizat ion on radio-signal attenuation during reentry f l i g h t .  

The vehicle w a s  designed t o  probe the  region of high s ignal  attenuation 
while f ly ing  an ascending t r a j ec to ry  so t h a t  it would e x i t  t he  so-called '%lack- 
out region" after a t ta in ing  peak speed. 
heating problems were minimized and the  performance of t h e  instrumentation w a s  
monitored before and after the  period of high s ignal  attenuation. 

Under these conditions aerodynamic 

The vehicle successfully followed the  planned t r a j ec to ry  and achieved a 
ve loc i ty  of 17,800 f e e t  per second a t  an a l t i t u d e  of 175,000 f e e t .  

The performance data  discussed included the  ve loc i ty  and a l t i t u d e ,  acceler-  
I a t ions ,  and r o l l  rates of t h e  multistage vehicle system. Angle-of-attack data  

fo r  t h e  r o l l i n g  four th  (payload) stage and a l so  temperature data on the  nose cone 
were also discussed. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va.,  November 30, 1962. 
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Figure 2.- Photograph of payload stage and booster system in launch position. L-61-6238 



Figure 3 . -  Photograph of payload stage and booster system j u s t  a f t e r  launch. L-61-6235 
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L-62-1435.1 
Figure 4.- End view of first stage showing two auxi l ia ry  Recruit motors attached 

t o  fin-shroud assembly. 
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(b) Photograph of  f i r s t -  t o  second-stage assembly. 

Figure 6.  - Continued. 
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(a) Photograph of second- t o  third-stage assembly. 

Figure 6. - Continued. 

L-62-1429.1 
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(a)  Variation of weight with time. 

Figure 9.- General propert ies  of four-stage vehicle system. 
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Figure 9.- Continued. 
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Figure 9.- Continued. 
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Figure 9.-  Concluded. 
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Figure 13.- Time histories of flight-test environmental conditions. 
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Time, sec Event Time, sec Event 

38.63 lSt Stage  separat ion 49.06 3rd Stage  i g n i t i o n  
42.04 and Stage  i g n i t i o n  55.91 3rd Stage  burnout 
49.06 Znd S t a g e  burnout 55.91 kth Stage  i g n i t i o n  

58.30 4th Stage  burnout 
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Figure 15.- Concluded. 
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Figure 16.- Time h i s t o r i e s  of measured r o l l  rates, calculated short-period p i tch  and yaw frequencies, 
and vehicle s t ruc tura l  frequencies. 
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Time, sec Event Time, scc Event 
38.63 lSt Stage separation 49.06 3rd Stage ignition 
42.04 Znd Stage ignition 55.91 3rd Stage burnout 
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Figure 17.- Time var ia t ion of measured d i f f e r e n t i a l  pressure.  
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Figure 18.- Time var ia t ion  of angle of incidence i n  plane of pressure o r i f i ce s  of payload stage. 
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